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SOLVERS FOR O(N) ELECTRONIC STRUCTURE IN THE STRONG
SCALING LIMIT

NICOLAS BOCK , MATT CHALLACOMBE∗, AND LAXMIKANT V. KALÉ†

Abstract. We present a hybrid OpenMP/Charm++ framework for solving the O(N) Self-
Consistent-Field eigenvalue problem with parallelism in the strong scaling regime, P � N , where P
is the number of cores, and N a measure of system size, i.e. the number of matrix rows/columns, basis
functions, atoms, molecules, etc. This result is achieved with a nested approach to Spectral Projec-
tion and the Sparse Approximate Matrix Multiply [Bock and Challacombe, SIAM J. Sci. Comput. 35
C72, 2013], and involves a recursive, task-parallel algorithm, often employed by generalized N -Body
solvers, to occlusion and culling of negligible products in the case of matrices with decay. Employing
classic technologies associated with generalized N -Body solvers, including over-decomposition, recur-
sive task parallelism, orderings that preserve locality, and persistence-based load balancing, we obtain
scaling beyond hundreds of cores per molecule for small water clusters ([H2O]N , N ∈ {30, 90, 150},
P/N ≈ {819, 273, 164}) and find support for an increasingly strong scalability with increasing system
size N .

Key words. Sparse Approximate Matrix Multiply; Sparse Linear Algebra; SpAMM; Re-
duced Complexity Algorithm; Linear Scaling; Quantum Chemistry; Spectral Projection; N -Body;
Charm++; Matrices with Decay; Parallel Irregular; Space Filling Curve; Persistence Load Balancing;
Over-decomposition

AMS subject classifications. 65F15, 65-04, 65Z15, 15-04

1. Introduction. Ab initio electronic structure methods for the Self-Consistent-
Field (SCF) problem, involving pure density functional theory (DFT) [80, 91] or hy-
brid functionals that also include the Fock exchange [18], offer predictive power at
low cost, finding broad utility in chemistry, biology, materials science and drug de-
sign. With conventional methods, solving the SCF eigenvalue problem significantly
contributes to the total computational cost due to its steep O(N3) scaling [44, 59]
which in practice restricts problems to systems with ∼ 1, 000 atoms even on large
computers [66, 74, 131, 72]. Recently, alternative methods which are O(N) (linear
scaling) have been developed that exploit the local quantum nature of non-metallic
electronic interactions. Early approaches to linear scaling solutions of the SCF eigen-
problem sought to exploit this quantum locality by avoiding the pair-wise support
of local basis functions beyond a cutoff radius, leading to matrix sparsity and an
O(N) computational effort through iterative algorithms based on the sparse matrix-
matrix multiply (SpMM) [94, 34, 35, 128, 77]. Later, incomplete/inexact methods
based on the dropping of small elements (radial cutoffs/filtering) were developed
[94, 61, 106, 47]. While current linear scaling methods can access systems involv-
ing ∼ 1, 000, 000 atoms [32, 109, 133], they have yet to enjoy widespread scientific use
at scale, perhaps because the demands of configurational sampling likewise increase
with system size. Thus, parallel algorithms that reduce the time to solution per atom
are key in unlocking the scientific potential of O(N) methods. For an excellent review
and current state of the art see Bowler et al. [32, 33, 36].

A parallel SpMM implementation was first mentioned by Goringe et al. as part
of the CONQUEST code using a one dimensional, row-wise matrix decomposition,
although details were not reported [69]. Later, one of us introduced the distributed
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blocked compressed sparse row (DBCSR) data format and corresponding algorithm
for distributed sparse matrix multiplication, with space filling curve ordering and a one
dimensional, row-wise matrix decomposition based on the greedy bin packing problem,
demonstrating parallel efficiency of the SCF eigenproblem up to 128 cores [47]. More
recently, space filling curve ordering schemes to improve locality and data layout in
radial cutoff schemes [34, 37] and two-dimensional matrix decompositions [30] have
lead to improved efficiencies. Bowler et al. reported a scalable SpMM on 196,000
cores involving ∼ 1, 000, 000 atoms [32, 109], while VandeVondele et al. demonstrated
scalability of ∼ 1, 000, 000 atoms on 46,656 cores [133]. Also, generic methods for
the SpMM have been developed by Buluç et al. where matrix row and columns are
randomly permuted to achieve an even load distribution, yielding high efficiencies
[38, 39, 42, 41, 40]. This approach has been adopted for quantum chemistry with
a slightly modified Cannon algorithm [45], radial cutoffs, and static load balancing
based on a fixed graph [30].

These parallel approaches to the O(N) SCF eigenvalue problem, based on one-
or two-dimensional strategies for matrix decomposition, have established scalability
in the weak regime, P/N ≈ constant, where P is the number of cores and N is the
system size (see for example Fig. 1 of Ref. [36]). However, bounding communication
costs to achieve scalability beyond the weak regime remains challenging [17] and will
gain in importance for the increasingly large, asynchronous, and heterogeneous next
generation of high performance computing systems with P > 1, 000, 000 cores1. In
addition, current randomization strategies [38, 133] that forgo locality are throttled
to O(logP ) [17] due to the cost of their communication algorithms, e.g. SUMMA
[132]; lowering these communication costs will require either an a priori knowledge
of sparsity patterns, or pre-computing and packing of non-zero elements before com-
munication [17]. So far, even prototypes of either strategy have yet to appear.

Recently we have developed an N -Body approach to the linear algebra of data-
local matrices with decay, involving the recursive occlusion of sub-multiplicative norms
based on the Cauchy-Schwarz inequality [50, 28, 27]. Besides wide application in phys-
ical simulation [137, 139, 140, 90, 82, 118, 75, 68, 111, 136, 135], N -Body methods find
broad applicability in statistical learning [71, 120, 110, 93, 92] and database operations
[108, 79]. Our Sparse Approximate Matrix Multiply (SpAMM) algorithm is loosely
comparable to the solution of Poisson’s equation through N -Body simulation with ra-
dial cutoff, which has been shown recently to exhibit communication optimal bounds,
O(1/P ), for locality preserving spatial decompositions [64]. With heuristic schemes
that parlay quantum locality into spatial and temporal data locality, together with
persistence based load-balancing and three-dimensional over-decomposition strategies,
the communication cost of SpAMM may be limited in a similar fashion.

In modern electronic structure theory there are typically four additional “fast”
solvers beyond the SCF eigenproblem that must interoperate with each other, rep-
resenting a tightly coupled collective of advanced numerical methods. Historically,
these solvers have been developed and optimized independently, involving differing
data structures and programming models (e.g. 3-D FFT, CSR based SpMM, trans-
formations of basis function to numerical grids etc.). In the strong scaling regime,
such a piecemeal collection may: (a) disrupt data locality with redistributions and
transformations, (b) significantly raise the barrier to entry and innovation, (c) exceed

1Already, the number of cores in the current top 5 supercomputers is close to or even exceeds this
number: Tianhe-2 – 3,120,000 cores, Titan – 560,640 cores, Sequoia – 1,572,864 cores, K – 705,024
cores.
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the ability of advanced runtime systems to load balance multiple programming mod-
els, (d) lead to divergent rates of error accumulation, and (e) impede deployment for
trends such as fine grained check-pointing [119, 147, 127], fault-tolerance [134], energy
aware load balancing [98, 125] and job malleability [88, 124].

We have recast all five solvers at the hybrid HF/DFT level of SCF theory within
the generalized N -Body solvers framework, including (1) Fock exchange [51], (2) spec-
tral projection (this work), (3) inverse factorization [52], (4) Coulomb summation
[53, 54, 55, 56] and (5) the exchange correlation problem [48]. These developments of-
fer a potential solution to challenges (a)-(e), through a unified approach with a proven
record of performance [137, 139, 140, 90, 82, 118, 75, 68, 111, 136, 135]. In this contri-
bution, we develop strategies for recursive over-decomposition and persistence-based
load balancing of the SpAMM kernel [50, 28] as employed by spectral projection,
an O(N) alternative to the SCF eigenvalue problem for matrices with decay [112].
Ultimately, generic N -Body frameworks and associated parallelization strategies, ex-
plored here in part, may lead to broad horizontal support and cohesion across entire
solver collectives, enabling access to the strong scaling regime for complex problems
such as electronic structure.

It should be pointed out that the density matrix constructed through purification
schemes, such as the method of Palser and Manolopoulos [116] and the SP2 method
[112] do not retain contact with the Hamiltonian eigenspace, exponentially accumu-
lating numerical errors under inexact/incomplete approximation [113]. In addition,
spectral projection solvers can not be preconditioned with the density matrix from
a previous step, e.g. within a molecular dynamics or structure optimization proce-
dure, negatively impacting overall performance [116]. On the other hand, variational
approaches such as the methods of Li, Nunes, Vanderbilt [94], and Daw [61] retain
contact with the eigenspace of the Hamiltonian through the gradient [31], however,
convergence can be very slow. More recently Newton-Schulz techniques have been
developed which yield accelerated rates of convergence, and maintain direct contact
with the Hamiltonian eigenspace [58, 52].

This paper is organized as follows: In Sec. 2 we describe in detail the SpAMM
algorithm and in Sec. 3 its parallel implementations within OpenMP and the Charm++

runtime. In Sec. 4 we detail our methodology and show parallel scaling results for
quantum mechanical matrices with decay and demonstrate scalable high-performance
in the strong scaling limit. Finally, we discuss our results in Sec. 5.

2. The Sparse Approximate Matrix Multiply. A wide class of problems
exist that involve matrices with decay, often corresponding to matrix functions [21],
notably the matrix inverse [63, 23], the matrix exponential [81], and in the case of
electronic structure theory, the Heaviside step function (spectral projector) [103, 116,
46, 47, 22, 19]. A matrix A is said to decay when its matrix elements decrease

exponentially, as |aij | < c λ|i−j|, or algebraically as |aij | < c/(|i− j|λ + 1) with
separation |i−j|. See Benzi for an excellent discussion [21, 23, 22, 20]. In simple cases,
the separation |i−j|may correspond to an underlying physical distance |~ri−~rj |, e.g. of
basis functions, finite elements, etc. [19], leading often to a strong diagonal dominance
when ordered carefully [47]. For simple decay, truncation in the two-dimensional
vector space, e.g. via radial cutoff aij = 0 if |~ri−~rj | > rcut [31], a numerical threshold
aij = 0 if |aij | < ε [47], or by restricting matrix operations to a known sparsity
pattern [30], together with the use of a conventional SpMM algorithm [73], yields a
reduced complexity kernel for the iterative construction of matrix functions. When
matrix operations are restricted to a known sparsity pattern, the matrices retain
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their sparsity by construction throughout the iterative process. But when radial or
numerical truncation schemes are employed the matrices will fill-in unless repeatedly
filtered [33].

Truncation may not be the most efficient or accurate approach to exploiting decay,
which can be oscillatory, involve quantum beats, or even long range charge transfer
as in the case of excited states, see for example Ref. [49] and references therein.
In addition, exploiting the secondary “lensing” effects in higher dimensional opera-
tion spaces within truncation schemes is challenging [52]. These effects are shown in
Fig. 2.1, which shows a density matrix for a large water cluster with the underlying
basis ordered to preserve locality; note the large anti-diagonal beats, as well as the
strong clustering and segregation of elements with like magnitude. For this type of
structured matrix with non-trivial decay, the quadtree [122, 123, 141, 142]

At =

(
At+1

11 At+1
12

At+1
21 At+1

22

)
, (2.1)

where t denotes the tier, pioneered in linear algebra by Wise et. al [143, 14, 15, 65, 70,
97, 144], provides a powerful framework for recursive database operations such as the
metric-query [16, 79, 83], involving the lookup of sub-blocks by magnitude, ‖Atij‖. In
this work we use the Frobenius norm, which is cheap to hierarchically compute from
submatrix norms,

‖A‖ =

√∑
ij

|Aij |2 (2.2)

and

‖At‖ =

√√√√ 2∑
i,j=1

‖At+1
ij ‖2. (2.3)

Based on this framework, the SpAMM algorithm [50, 28]

Ctij ← Ctij +

2∑
k=1

{
AtikB

t
kj for ‖Atik‖‖Btkj‖ > τ

0 otherwise
(2.4)

exploits decay recursively in the three-dimensional convolution space, with adaptive
culling and occlusion of insignificant products at each tier t, determined by applica-
tion of the sub-multiplicative norm inequality, ‖AB‖ ≤ ‖A‖‖B‖, and a numerical
threshold τ controlling precision.

While the discussion has so far involved dense matrices, SpAMM is applicable to
sparse matrices as well. Also, even with dense matrices, large values of τ correspond
to an implicit truncation and potentially a sparse product. Relative to conventional
row-column approaches to the SpMM, the SpAMM algorithm applied to structured,
data-local matrices with decay may achieve: (i) additional flexibility in the three-
dimensional task space for domain decomposition and load balancing (this work),
(ii) the recursive accumulation of terms with like magnitude and an O(N lgN) error
accumulation [28, 25], (iii) occlusions that occur early in recursion enabling commu-
nication optimal approaches, (iv) a more efficient use of high level memory chunking
for message passing and low level blocking strategies for acceleration (also this work),
and (v) additional flexibility for achieving error control within a culled volume, and
complexity reduction via lensing.
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Fig. 2.1: The decay of matrix element magnitudes of a converged spectral projector
(density matrix) for a (H2O)300 water cluster at the RHF/6-31G∗∗ level of theory
(n = 7500), where the molecular geometry has been reordered with a space filling
Hilbert curve. The different colors indicate different matrix element magnitudes; red:[
0, 10−8

)
; green:

[
10−8, 10−6

)
; blue:

[
10−6, 10−2

)
; violet:

[
10−2, 1

]
, corresponding to

approximate exponential decay.

3. Task Over-Decomposition. One of the strengths of the generalized N -
Body framework is that there are many ways to realize over-decomposition on a range
of hardware, e.g. from long pipe GRAPE single instruction, multiple data (SIMD)
accelerators [111, 101, 100, 99, 89] to conventional symmetric mulitprocessing (SMP)
and multiple instruction, multiple data (MIMD) architectures [79, 95, 135, 139, 138,
137, 140, 68, 75, 82, 90, 118]. Ideally, an architecture independent runtime system
seamlessly enables the recursive generation of lightweight tasks, as OpenMP 3.0 does
for SMP. However, while this feature is a target of the Dynamic Parallelism framework
of NVIDIA’s CUDA 5.0 [4] and at least partially included in a number of parallel
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runtimes such as Intel’s Threading Building Blocks (TBB) [6], Concurrent Collections
(e.g. Intel’s CnC [3]), Wool [13], Nanos++ [7], OpenUH [11], Intel’s Cilk Plus [5], the
Open Community Runtime (OCR) [8], OpenCL [9], TASCEL [12], etc., full support
for recursive task parallelism is mostly unrealized for distributed memory systems
at present. In this work, we consider simple methods for achieving recursive task
parallelism with SpAMM for the ubiquitous “cluster of SMP nodes” architecture [129,
76, 145, 62] using two runtimes, OpenMP and Charm++, within a hybrid approach.

There are two main considerations in our scheme that involve memory and task
management: First, the näıve use of task parallelism at the SMP level, with either
OpenMP or Charm++, has the potential to involve non-contiguous memory and high
packing/unpacking overheads when redistributing memory between nodes, potentially
negatively impacting overall performance. Additionally, the cache hierarchy of modern
CPUs with small, local caches and large, shared last level caches should not be ignored.
Second, an explicitly allocated, unrolled octree is a necessary structure that enables
Charm++ to manage tasks involving occlusion and culling as well as node-level SMP
work due to limitations of the load-balancing framework implemented in Charm++.

Thus, we allocate contiguous chunks of size Nc ×Nc to hold a full sub-quadtree
together with a Nb × Nb blocking at the lowest level. The chunks are processed
using OpenMP and the code can potentially be used without modification on the
Intel Xeon Phi coprocessor and through automatic source code translation [114, 102,
121, 57] on GPGPUs. In addition, the use of OpenMP removes Charm++ compile and
runtime dependencies for single-node applications, potentially significantly simplifying
the build process.

We expect the overall performance to be influenced by several competing size-
dependent effects: (1) The ratios N/Nc and Nc/Nb limit the maximum number of
tasks available for load-balancing for Charm++ and OpenMP respectively, and (2)
the leaf node size Nb affects the performance of memory access through the CPU’s
cache hierarchy and the potential for vectorization and convolution space compression.
While we previously demonstrated that a highly specialized and optimized dense
kernel can lead to competitive performance for very small dense submatrices of Nb =
4 [28], the use of manually tuned assembly code renders this approach rigid with
respect to submatrix granularity and width of SIMD vectors. Thus, in this work, we
implemented a simple kernel with three nested loops and leave low-level optimizations
to the compiler.

3.1. OpenMP. Shown in Alg. 1 is the SMP parallel implementation within the
OpenMP application programming interface; SpAMM omp recursively walks a transient
octree generated dynamically on the stack through the OpenMP 3.0 tasking feature
[10]. Guided by the binary convolution of matrix quadtrees At and Bt at each tier t
(line 3), the implicit octree traversal may be sparse and irregular due to culling and
occlusion (line 4) based on the sub-multiplicative matrix norm inequality, ‖AB‖ ≤
‖A‖‖B‖. The parallel tree traversal is extended through untied OpenMP tasks (line
5) and recursive calls to SpAMM omp (line 6). Per node synchronization (to ensure
appropriate variable lifetimes) is achieved through the OpenMP taskwait statement
(line 9). Finally, at the leaf tier, dense matrix products are performed and the result
reduced into the C quadtree (line 12), with a data race on C prevented through explicit
use of OpenMP locks (lines 11, 13). While other approaches to address data write
contention are certainly possible, e.g. OpenMP reductions or atomics, we found good
on-node parallel scaling using explicit locks, and defer such potentially performance
enhancing details to a forthcoming article.
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In this work we have made only modest effort to optimize the SpAMM omp imple-
mentation, or even the dense contraction on line 12. In Ref. [28] we showed that
accuracies better than the native GEMM are possible also with N -scaling, but that
difficult, platform specific optimizations were necessary; we are currently developing
a corresponding OpenMP algorithm and are investigating the use of compiler vector-
ization and OpenMP 4.0 SIMD constructs [10].

Algorithm 1 The OpenMP SpAMM algorithm, recursively multiplying matrices
C ← A×B under a SpAMM tolerance τ . The function matrix arguments are pointers
to tree nodes.

1: function SpAMM omp(τ , t, At, Bt, Ct)
2: if t < depth then

3: for all
{
i, j, k

∣∣∣ Ctij ← AtikB
t
kj

}
do

4: if ‖Aik‖ ‖Bkj‖ > τ then . Culling
5: OpenMP task untied

6: SpAMM omp(τ , t+1, At+1
ik , Bt+1

kj , Ct+1
ij )

7: end if
8: end for
9: OpenMP taskwait

10: else
11: omp set lock . Acquire OpenMP lock on C
12: C ← C +A×B . Dense product
13: omp unset lock . Release OpenMP lock on C
14: end if
15: end function

3.2. Charm++. Charm++ [2] is a mature runtime environment on distributed
memory platforms available for all major supercomputer systems, allowing for efficient
scalable high performance implementations [105, 125, 86, 96, 85, 67, 104, 87, 24, 146].
In the message-driven execution model of Charm++, code and data are encapsulated
in C++ objects called “chares” which are initially placed by static load balancing al-
gorithms. Dynamic persistence-based load balancing strategies migrate chares trans-
parently during solver execution based on load and communication measurements
from previous solver iterations and efficiently optimize load distribution and com-
munication cost. The Charm++ runtime transparently manages chare placement and
migration and proxy objects are used to send messages to particular chare instances or
groups thereof without explicit specification of their location. Chares can be grouped
in multi-dimensional sparse arrays or used as “singleton” objects.

Persistence-based load balancing exploits temporal and spatial localities in iter-
ative solvers through decomposition of the load and communication graph. Since
the dynamic load balancing strategies of Charm++ only consider chares organized in
arrays persistently instantiated across solver operations and load balancing, the mul-
tiplication octree has to be explicitly stored in memory (as opposed to the transient
stack based “storage” used in the SMP implementation). Note that such persis-
tent allocation of the multiplication octree could aid efficient load balancing across
molecular dynamics or structure optimization steps, see e.g. the impressive scaling
of astrophysics applications [67, 84, 135]. The nodes of the matrix quadtree between
root, t = 0, and chunks, t = tc, given by Nc, are stored in a stack of two-dimensional
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chare arrays of size 2t×2t each. The corresponding unrolled octree is stored in three-
dimensional chare arrays with occlusion and culling carried out iteratively, tier-by-tier,
until the chunk level at which SpAMM omp is invoked.

Data and work locality are exploited through the communication aware load bal-
ancing strategies in Charm++. However, at the time of this writing, a bug in the
Charm++ runtime [26] prevents the use of sparse load balanced chare arrays. As a
work-around, we mark chares that correspond to pruned tree nodes with a boolean
data member, isDisabled == true, introducing aO(N3) communication component
with a prefactor found to be negligible.

Algorithm 2 The SpAMM algorithm in the Charm++ programming language. Tree
occlusion is done by iterating over the three-dimensional multiplication chare arrays,
convolution[d]. In Charm++ a call such as convolution[t].occlude translates
into a broadcast to all array elements of convolution[t].

1: function SpAMM charm(τ , A, B, C)
2: for t ≥ 0 ∧ t < d do
3: convolution[t].occlude(τ) . See Alg. 3
4: end for
5: convolution[d].multiply
6: convolution[d].store
7: end function

The Charm++ algorithm is outlined in Alg. 2 and proceeds in three phases. In
the first phase, the multiplication octree is constructed iteratively over the top tiers of
the three-dimensional chare arrays, shown in lines 2 and 3 of Alg. 2. This phase is a
breadth-first implementation of the SpAMM algorithm and retains the full complexity
reduction of the depth-first, recursive implementation, Alg. 1. In each iteration of
this phase, a broadcast message is sent to all multiplication chares of tier t (line 3)
executing the occlude method on the enabled array elements, shown in Alg. 3. The
scalar products of the eight matrix norms of the A and B nodes of the next tier are
formed, lines 6-10 of Alg. 3, and Eq. 2.4 is used to decided whether to enable or disable
the corresponding multiplication chares. Disabled multiply chares (isDisabled ==

true) are skipped during the next iteration of the pruning phase, shown in lines 2-4
of Alg. 2.

During the second phase, line 5 of Alg. 2, the SMP SpAMM code is called to
compute the Nc ×Nc submatrix products in each remaining, enabled multiplication
chare, and the results are stored in a temporary variable local to the chare. In the
final phase, line 6 of Alg. 2, all temporary matrix products are gathered in the store
method, summed, and added to the corresponding chares of C. Since the Charm++

runtime guarantees exclusive execution of chare instances, explicit locking or other
means of synchronization as in the OpenMP implementation are not necessary.

3.3. The OpenMP/Charm++ Hybrid. In our hybrid approach, we found
the best performance with one Charm++ Processing-Element (PE) per node, OpenMP
commanding all on-node threads and Nc×Nc quadtree chunking as discussed above.
This approach avoids the problem of packing and unpacking fragmented memory
during chare migration, enabling use of a single memcpy, which is efficient in standard
libraries such as libc. Certainly, optimal chunk and block sizes are likely to be
application dependent, an issue beyond the scope of the current work. A further
complication of the hybrid approach involves the issue of local vs. absolute addressing;
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Algorithm 3 Tree occlusion in the Charm++ programming language of the
multiplication chare element on tier t with index (i, j, k). In Charm++ the call
convolution[t + 1](i, j, k).enable translates into a direct message to the enable
method of the multiplication chare element with index (i, j, k) on tier t+ 1.

1: function occlude(τ) . On tier t, index (i, j, k) ∈ [1, 2t]
2: if isDisabled then
3: return
4: end if
5: for all

{
i′, j′, k′

∣∣∣ Ct+1
i′,j′ ← At+1

i′k′B
t+1
k′j′

}
do

6: if ‖At+1
i′k′‖‖B

t+1
k′j′‖ > τ then

7: convolution[t+ 1](i′, j′, k′).enable
8: else
9: convolution[t+ 1](i′, j′, k′).disable

10: end if
11: end for
12: end function

by wrapping an address offset with convenience macros, the OpenMP application
programming interface given in Alg. 1 can be used without modification.

4. Results. In this work we consider scalability of the SpAMM kernel in the
context of spectral projection [103, 116, 46, 47, 22, 19], an alternative to explicitly
solving the SCF eigenvalue problem [130]. Spectral projection involves nested con-
struction of the matrix Heaviside step-function from the effective SCF Hamiltonian
(Fockian), in our case computed in a basis of atom-centered functions [130]. In this
work, tightly converged, dense matrices for a sequence of water clusters were com-
puted at the B3LYP/6-31G** level of theory [18] using FreeON, a suite of programs
for O(N) quantum chemistry [29]. This sequence of water clusters corresponds to
standard temperature and pressure, and has been used in a number of previous stud-
ies [56, 55, 53, 43, 126, 107, 60, 115, 28]. The 6-31G** basis set introduces 5 basis
function per hydrogen atom and 15 basis functions per oxygen atom, yielding 25 ba-
sis functions (and matrix rows and columns) per water molecule. A key aspect of
this work is ordering of the atom indices with the locality preserving Hilbert curve,
Ref. [47] and references therein, yielding clustering and segregation of elements by
magnitude as in Fig. 2.1.

In a previous study [28], we reported linear scaling computational complexities
and SpAMM errors as the max norm of the difference between the SpAMM product
and a dense reference product. Here, we consider SpAMM errors that accumulate
in iterative application of the second order spectral projection scheme (SP2) [112].
In all cases, the SP2 solver was run to convergence, taking 40 iterations. Values of
τ = 10−6, 10−8, and 10−10 are considered for scaling experiments, with τ = 10−6

corresponding to extreme truncation (a highly sparse representation).

All OpenMP scaling studies were run on a fully allocated 48-core, 4-socket AMD
Opteron 6168 (Magny Cours architecture) system running at 1.9 GHz using GNU gcc

4.6.3, and a 24 core, 2-socket AMD Opteron 6176 (Magny Cours architecture) system
running at 2.3 GHz using GNU gcc 4.7.2. The Charm++ scaling studies were run
on the largest open computer cluster at Los Alamos National Laboratory (LANL),
“mustang”, which consists of 1,600 dual socket AMD Opteron 6176 (Magny Cours)
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Fig. 4.1: The absolute error of the energy after 40 iterations of the spectral projection
method for different water clusters in B3LYP/6-31G∗∗.

nodes for a total of 38,400 cores using GNU gcc 4.7.2. All tests used the -O2 level of
compiler optimization.

4.1. Error Accumulation. The accumulation of error in spectral projection
due to the SpAMM kernel is computed here as Tr[F (P − P̃ )], where F is the Fockian,
P̃ is the approximate density matrix computed from F with τ 6= 0, and P is a reference
computed with τ = 0. These errors are reported in Fig. 4.1, demonstrating that the
error per molecule exhibits no significant system size dependence for the cases studied
here, in agreement with our earlier results on the max norm error behavior of SpAMM,
Figs. 5.2 and 5.3 of Ref. [28]. Roughly, these results suggest that chemical accuracy
(1 kcal/mol or 4.184 kJ/mol [78]) may be retained with 105 water molecules and a
SpAMM threshold of τ = 10−10. As discussed in Sec. 2, the control of accumulated
errors in the spectral projection solver is challenging due to the non-variational nature
of the solver. However, our results indicate good error control even under extreme
truncation conditions (τ = 10−6) due to the recursive occlusion and culling based
on the sub-multiplicative norm inequality, as opposed to matrix element truncation
directly in the vector space.

4.2. OpenMP scaling. SpAMM omp (Alg. 1) was benchmarked for the last SP2
iteration of the (H2O)90 and (H2O)150 density matrices with a loose SpAMM tolerance
of τ = 10−6. These examples are well within the linear scaling regime for SpAMM
calculations [28], yet small enough to probe a lower molecule/core ratio available
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(a) SpAMM omp restricted to 1 thread. (b) SpAMM omp on all 48 threads.

Fig. 4.2: Total time of matrix product for (H2O)90 of SpAMM omp with τ = 10−6

restricted to one thread, (a), and on 48 threads, (b), on the Opteron 6168. In serial,
we find the measured walltime to be independent of Nc, but to depend strongly on
Nb. Note that Nb > 64 exceeds L1d leading to significant performance loss. An
increase in compression due to smaller granularity leads to decreasing walltime with
decreasing Nb, and an optimal block size of Nb = 16. Tests with τ = 0 indicate that
the optimal block size in serial without compression is Nb = 64. On 48 threads, the
shortest walltime shifts from Nb = 16 to Nb = 64, shown in (b), which indicates poor
memory access performance and is potentially due to a lack of cache/core affinity.
It is worth noting that we find a large spread in performance for Nb = 4 across the
chunk sizes tested.

(a) 48-core Opteron 6168. (b) 24-core Opteron 6176.

Fig. 4.3: Parallel efficiency of OpenMP code with different granularities for B3LYP/6-
31G** (H2O)90 and (H2O)150 with τ = 10−6. The best performing combination of
Nc/Nb at the maximum number of threads (P = 48) was chosen for each value of Nc
tested. Note that the native matrix size of 2, 250× 2, 250 is padded to 4, 096× 4, 096.
There is little difference between the two water clusters. While larger chunks exhibit
good parallel efficiency, we find a significant drop of parallel scaling for the smaller
chunks.
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on modern SMP platforms. In addition, such a loose SpAMM tolerance leads to
irregular work loads and data access, potentially challenging the OpenMP runtime.
Shown in Fig. 4.2 are walltimes for the smaller water cluster, (H2O)90, under several
combinations of Nb and Nc in serial (OpenMP restricted to one thread), (a), and on 48
threads, (b). We find the overall performance and parallel scaling to be significantly
influenced by Nc and Nb. While the performance in serial, Fig. 4.2 (a), is mostly
independent of the tested chunk sizes, Nc = {128, 256, 512, 1024, 2048, 4096}, it is
significantly impacted by the size of Nb. For large values, Nb > 64, we note a steep
rise in walltime which we attribute to a lack of temporal locality in cache due to the
size of per core L1d of 128KiB. The improving performance with decreasing block size,
Nb ≤ 64, is due to increasing compression in convolution space due to finer granularity.
Tests with τ = 0 indicate that the optimal block size in serial is Nb = 64. However,
on 48 cores we find that the shortest walltime shifts from Nb = 16 to Nb = 64, which
indicates poor memory access performance and might be due to a lack of thread/data
affinity. Also, on 48 threads we find the walltime to depend more strongly on Nc,
which we attribute to a lack of potential tasks for shallow trees, indicated by small
ratios Nc/Nb.

In addition to walltime, it is instructive to investigate the parallel efficiency of
SpAMM omp. For each value of Nc we chose the value of Nb, yielding the fastest (lowest
walltime) performance at 48 threads, and calculated the parallel efficiency as E(P ) =
T (1)/(P T (P )), where P denotes the number of threads, shown in Fig. 4.3. We note
that efficiencies up to 80% can be achieved for large chunks. As Nc/Nb and the
number of potential tasks decreases (4096/64→ 262, 144 potential tasks, 2048/64→
32, 768 potential tasks, . . . ) load balancing becomes increasingly challenging with
a significant decline in parallel efficiency. Compared to (H2O)90, the larger water
cluster, (H2O)150, exhibits a slightly superior parallel scaling for the larger chunks.
However, the qualitative behavior with decreasing chunk size remains the same.

4.3. Charm++ Scaling. This study involved scaling with the progression P =
24 × 2m, up to 24,576 cores (1024 nodes) on LANL’s largest open computer clus-
ter “mustang”. The study consisted of spectral projection via the SP2 method
until convergence (40 iterations) with m = 1, 2, . . . , 10, and τ = 10−6, 10−8, and
10−10. The initial data distribution during the first SP2 iteration was given by the
Charm++ default static load balancer. After each iteration of the SP2 algorithm,
the GreedyCommLB load balancer of Charm++ was called to migrate matrix and mul-
tiply chares in order to rebalance work and data. To demonstrate the efficiency of
the GreedyCommLB load balancer, we show walltime vs. cores for the first iteration
(only statically balanced), panels (a)-(c) of Fig. 4.4, and for the final iteration, panels
(d)-(f) of Fig. 4.4. Notice that the difference in wall time between the first and last
iteration is due to matrix fill-in (the decay slows from Fockian to density matrix). On
the first iteration, we observe scaling roughly to P = 30 N , corresponding to the de-
fault Charm++ data distribution. After a few iterations however, the communication
aware persistence-based GreedyCommLB load balancer dynamically migrates chares to
achieve a balance of very high quality. In applications, the persistence-based load
balance will remain effective between SCF cycles, and also as atomic-positions grad-
ually evolve, e.g. in a molecular dynamics simulation, geometry optimization, etc.,
mitigating inefficiencies associated with the first iterations.

In Table 4.1, we list parameters for the fits to Amdahl’s law, T τ
s + T τ

p /p, corre-
sponding to the fitted lines in panels (d)-(f) of Fig. 4.4. Also given in Table 4.1 are
the corresponding break-even core counts, P τ

even = T τ
p /T

τ
s , the ratio between parallel
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τ (H2O)N matrix Ts [s] Tp [s] Peven

10−10
30 750 1.95 1,981 1,016
90 2,250 1.66 53,481 32,252

150 3,750 2.74 224,825 81,909

10−8
30 750 2.05 1,981 966
90 2,250 1.41 46,459 32,898

150 3,750 2.48 149,819 60,364

10−6
30 750 1.80 1,621 899
90 2,250 1.11 30,983 28,007

150 3,750 2.55 65,284 25,553

Table 4.1: Fit parameters for Amdahl’s law, Ts + Tp/P , corresponding to the curves
in panel (d)-(f) of Fig. 4.4. Matrix dimensions are shown in the third column la-
beled “matrix”. Also listed is the break-even core-count Peven = Tp/Ts, providing a
conservative estimate of parallel scalability.

and serial components. The break-even core count is a conservative estimate of the
core count at which additional scaling becomes ineffective due the left-over serial com-
ponent, which was found to be 1-3 seconds in all cases. Also, we notice a pronounced
decrease in the parallel component with increasing values of τ , due to sparse-irregular
effects. It should be noted that this analysis is a useful quantitative guide despite it
being simplistic in ignoring more subtle scaling effects such as for example the scaling
behavior of communication collectives and the details of network topology.

5. Conclusions. Relative to the ≈ 4 heavy atoms/core granularity achieved in
the weak limit by advanced parallel methods [36], the default “static” distribution
of work exhibited by our OpenMP/Charm++ implementation achieves roughly P =
30 N , as shown in panels (a)-(c) of Fig. 4.4. Assuming 1 water molecule ≈ 2 heavy
atoms, our default is ∼ 60× more scalable. Once persistence is employed however,
our results extend into the strong scaling regime, yielding P = 400 N to 600 N as
inferred from Table 4.1. For working accuracies and larger systems, e.g. N � 150
and τ ∈ {10−8, 10−12}, we expect substantially better results as suggested by Table
4.1. We also expect substantially better results for problems with slower decay, as for
example problems involving semi-conductors and metal oxides.

Based on the results given in Fig, the (very modest) serial component seems to be
due to the Charm++ runtime. Larger calculations on larger computers will allow the
reliable collection of diagnostics, as well as examination of the relationships between
data locality and communication.

While our recursive, depth-first implementation of SpAMM with OpenMP ex-
hibits good parallel scaling for larger chunk sizes, further improvements, including
parallel performance at fine granularities, may require more explicit approaches to
exploiting the inherent temporal and spatial localities present in SpAMM and to
make contact with the deep memory cache hierarchy of the Magny-Cours architec-
ture. Also, other computer platforms may not exhibit the pronounced non-uniform
memory access (NUMA) effects common to the AMD Magny-Cours architecture, and
we may expect the parallel performance of SpAMM omp on those platforms to show
improved scaling. Finally, it is known that the runtime has significant impact on
the performance of SpAMM-like workloads [117], and other programming frameworks
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(a) First SP2 iteration, τ = 10−10. (b) First SP2 iteration, τ = 10−8.

(c) First SP2 iteration, τ = 10−6. (d) Last SP2 iteration. τ = 10−10.

(e) Last SP2 iteration, τ = 10−8. (f) Last SP2 iteration. τ = 10−6.

Fig. 4.4: Shown in panels (a)-(c), scaling results of the first SP2 iteration under
different thresholds. Shown in panels (d)-(f), scaling results of the last and fully load-
balanced iteration (iteration 40) of SP2, under the same thresholds. As a guide, fits to
Amdahl’s law, Ts+Tp/p, are shown as solid lines, see Table 4.1 for fitting parameters.

might lead to improved parallel scaling.

These satisfactory results follow from over-decomposition of the three-dimensional
convolution space, relative to conventional methods that involve decomposition in
one or two dimensions, and from runtime systems that support the irregular task
parallelism inherent in the generalized N -Body solvers framework. The ability to
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recursively generate singleton chares would greatly simplify the implementation of N -
Body methods, and enhance their efficiency by eliminating the explicit management
of tree-traversal as explained in Section 3.2. This prospect, together with a unified
code base for N -Body solver collectives (based on established prototypes [51, 52, 53,
54, 55, 56, 48]), may offer a simple and well posed approach to meeting the challenges
of increasing hardware complexity.

The software written for and used in this study is available online at http://

www.freeon.org/spammpack [27], licensed under the terms of the BSD license [1].
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